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Let {X,} ¢ be the orthonormal system of Legendre polynomials on [ —1, 1]. For
feC[—1,1] let S,(f) (n+ 1€ N) be the nth partial sum of the Fourier—Legendre
series of the function f. Some refinements of the classical inequality

Hfisn(f)H(‘[—].l]<A'(n+1)]/’2En(4f)(‘9 A =const., A>0, (1)

involving best approximation in L,-norms are discussed. For a class of examples
we obtain better order estimates than those that can be derived from (1).
Furthermore, we show that the results are best possible in a certain sense. It
turns out that only in two particular cases (p =% and p=4) there is no proof of
optimality of the results.
In conclusion, we give without proof a generalization of the main theorem to the
ultraspherical case.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Let L, (1<p <o) be the space of functions f, measurable on [ —1,1]
and integrable to the power p, with norm

=] eoreas)”

We set, by definition: (1) L, = C, where C is the space of functions f, con-

tinuous on [ —1, 1], with || fll.. = [ fllc=max <, [f(x)]; (2) L=L,. By

N we mean the set of all natural numbers. Let {P,}; be the system of

Legendre polynomials normalized by the condition P,(1)=1, n+1eN.
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The Fourier—Legendre coefficients of a function fe C will be denoted by

c(f), e,
el f) = fl F(x) Xu(x)dx,  k+1€eN.

We also set R,(f)=f—S,(f) (n+1eN). By H, (n+ 1€ N) we denote the
set of all algebraic polynomials of degree at most n, and for every
pell,0], n+1eN, we set

En(f)pzlnf{ Hf_ Qn”p: QneHn}'

By A and A with arguments between parentheses we denote (in general,
different) absolute positive constants and positive constants depending on
the arguments in the parentheses, respectively. For two sequences {a,} ¢,
{B.} ¢ of positive numbers, we shall write a, ~ f3, if there exist constants
A, A, >0, independent of n such that

A f,<a,<A,B, (n+1eN).

The idea of estimating in some metric the deviation of a linear polyno-
mial operator from a given function, in terms of best approximation of the
function by corresponding polynomials, goes back to Lebesgue [8]. The
classical estimate (1) follows directly from results obtained in [5] and
[197. In [14], one of the authors established the following statement.

Let v=0,n+1€N,

1w =max [(1=x*)" f(x),  E(f)e,=inf{l/= Oyl Qn€H,}.

x| <1
For fe C,0<v<3, n+1€eN one has

IR c<SAWM{(n+1)* E(f)c+ (n+ 1) E(f).0 .} (2)

(see also [21]).
The following estimate was proved in [17]: If fe C, p >4, n+ 1€ N, then

IR/ c<AP){(n+1)*" E(f)c+ (n+ 1) E(f),}. (3)

Both inequalities (2) and (3) give no worse, and sometimes better, order
estimates for |R,(f)| < than the estimate (1).

In this paper we obtain further refinements of (1), similar to (3). As a
result we derive estimates for ||R,(f)| < that for some particular functions
are better with respect to order than those given by (1) and (3).

Some statements, similar to (3), for trigonometric Fourier series can be
found in [25-27].
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2. THE MAIN THEOREM

THEOREM 1. Let feC, n+1€eN. Then

IR.() e
APNE(f) e+ (n+ 1) EL(f), EZE(f)e). I<p<4/3, (4)
AE(f)et+(n+ 1) 2(n+2) EP(), EZP(f) o) p=3, (5)
SQADPNE(N)e+ (n+ D)2 (E),)" (ELf))' ), 5<p<4 (6)
AE,(f)e+(n+ 1) In¥(n+2) E,(f),), p=4 (7)
APNE(f)et+(n+1)2 E(f),), p>4 (8)

Before proving this theorem, we discuss its relationship to the estimates
(1) and (3), as well as possible applications. The estimate (8) is a further
sharpening of (3); the estimate (6) is a refinement of (1). When applying
Theorem 1 one can take into account that for some particular functions f
the order of decrease of E,(f). and E,(f), is either known or can be
estimated from above. It is worth noting that for this purpose one can
make use of different Jackson-type theorems [9-11, 13, 15]. For example,
as a consequence of (1) and of Jackson’s theorem on the approximation of
a function by algebraic polynomials in the C-metric, we obtain that for

feLipy, y> 1, one has the estimate
IRl e<Ay)n+1)277  n+leN.

We give two examples in order to illustrate possible applications of
Theorem 1.

ExaMpPLE 1. We consider the function f(x)=(x—c¢) "' |x—c|, reN,
|c] < 1. It is known [23, p. 426] that

E(f),<A(r g, c)n+ 1)1, 1<g<oo, n+leN.
After applying (6), we obtain the estimate
IR e<A(r, g e)n+ 1)~ n+leN.

This estimate cannot be derived by making use of (1) or (3).

ExampLE 2. For the function ¢(x)=(1—x)"In(l —x), re N, we have
the relations

E(@)le~(n+1)7%,  E(p), <A(r)(n+1)">72
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(see [16, p. 462] and [18], respectively). After using (4) with p=1, we
obtain

IR (@)l c<A(r)(n+1)72

showing that in the C-metric the Fourier—Legendre partial sums provide
for the function ¢ an approximation of best possible order.

3. THE MAIN TOOLS

We shall need the following facts from the theory of Jacobi polynomials.
We have [3]:

(n41)V2-2p, p>4
1X, [, ~ < In"*(n+2), p=4 9)
1, 1<p<4.

The following inequality holds [22, p. 168]:

(I=x)"* X, (x)| <4,  (n+1eN,|x[<1). (10)
Let { P} = be the system of Jacobi polynomials, orthogonal on [ —1, 1]
with respect to the weight function 1 —x and normalized by the condition
P"(1)=n+1 (n+1eN). Then we have [22, pp. 168 and 71 respec-
tively ]

(1=x)* (1+x)*[PMO(x)| <A(m+1)7'2 n+leN, |x|<l; (1)

Z (2v+1) P,=(n+1) P10 (12)

(see also [22, p. 71]).

4. PROOF OF THEOREM 1

We can assume f¢ H, since otherwise our statement is obvious. For
n+1, ke N we set

n+k—1

ol f)=k=" 3 S(f);
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[o0)

o, f) are the de La Vallée Poussin sums for f in the system {X,}".
Obviously,

RN e<f =0, Dt 10,0/) =Sl (13)

It was proved in [ 7] that for n+ 1, k€ N one has

1
If—Gn,k(f)|c<A< \n/;{—r +1>En(f)c- (14)

In order to estimate the second term of the right-hand side of (13), we
make use of the easily verifiable equality

n+k—1
Tui ) =Sf)=k" Y (n+k—))c,(f)X, (15)

Jj=n+1

(for k=1 we assume that the last sum is equal to 0).
We consider now the generalized translation operator (gt.o.) f— f,
defined on L by

J‘,(x)zn”f:f(xcost+ I—sinrcosi)di, |fl<m  (16)

This operator was introduced in [4] (see also [2, 24]). Obviously, fe C
implies f, e C (|¢| <x). We shall use the following properties of the g.t.o.:

(1) for felL,k+1€eN, te[ —n,n] we have [4, 2, 24]
el f2) =i f) Pi(cos 1); (17)
(2) for feC, xe[—1,1], te[ —=n, n] we have
Ji(%) = farccos (€08 1); (18)
(3) for feL,(1<p< ), te[—mn n] we have
1fl, < I, (19)
Equality (18) is obvious. Inequality (19) was proved for p=1 in [16]; for

I <p< oo it can be proved in a similar manner; for p = oo it is obvious.
For n+ 1, ke N we introduce the function

qﬁn,k:{kl nH e b k=) X(1) X, k=2, )

0, k=1.
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We show now that for n+1, ke N, xe[ —1, 1] we have

Gl fiX) = S,(f; )= [ £x) ®,,,(cos 1) sin ¢ . (1)

For k=1 the equality (21) is obvious. Assume that k>2. Taking into
account (18), (17), (20), and (15), we obtain

J f(x) @, (cos t) sin ¢ dt
0
:f f;lrccos X(COS t) ¢n,k(cos t) sin ¢ dt
0

j(fdrccos x) Cj(¢n,k)

1
= J‘ farccos x(Z) ¢n,k(z) dZ =
1

118
(e}

J
n+k—1

=k=' Y ¢(Nn+k—)) X;=0,f)=S.(f)

Jj=n+1

Suppose that Q,eH,, |f—0Q,l,=E,f), It follows from (17) that
0,.€H, Vte[ —mn, n] and, therefore, according to (20) and (21) we
obtain

0uil £:3) = S, i) = [ LAA2) = Q)] yulcos ) sin v (22)

Applying Holder’s inequality, in view of (19) we get

”O-n,k(f)_Sn(f)”C<”én,k”q'En(f)pa [771'1'6171:1- (23)

For the estimation of ||®, |, we shall consider in turn all the five
possibilities for p, listed in the formulation of Theorem 1.

(i) 1<p<3%. Making use of the first inequality in (9), we have

n+k—1
ann,qu<kil Z (n+k_J)X](1)HX]Hq
Jj=n+1
n+k—1
SA(p)k=' Y (ntk—j) o
Jj=n+1

<Ak~ (n+k—1)""(k—1)
—A(p)n+k—1)2r=" (k—1).
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It follows from (13), (14), (23), and (24) that for k <n+ 2 we have

IR/ e<A (V”Jz Ly 1) Edf)e

+AP)(n+ 1?7~ (k=1) E,(f),+ (k=17 E,(f),)
SAP)@i(k) + (k) = A(p) 241(k), (25)

(26)

21 (1 k< 2
P k=1 E(f),, k<n+ 2i(k) =@, (k) + (k).

1
b=

)P E(f), k>n+2,
Further
IR()c<A(p)- min A,(k). (27)
k<n+2

The evaluation of min, ., ., 4,(k) is a simple exercise in calculus. From
di(k)/dk =0 we obtain

k=ko=(n+1)'"¥7(E,(f))* (Ef),) "

Now we consider two cases:

(a) ko<n+2;in this case

min 4,(k) <4y([ko]+1)

k<n+2

b

N

< T 1) E(f)e+(n+177 = koE,(f),

NG

=E(f)c+2n+ 1Y ER(f), EZP(f) e (28)

here and in the following by [a] we mean the greatest integer not
exceeding a.

(b) ky>n+2; in this case

min A,(k)=2,(n+2)<2E,(f)c+(n+ 1?7 E,(f)

2
k<n+2
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We note that the inequality ko>n+2 implies (n+1)*” E,(f), <E,(f)c.
so that

min 2,(k) <3E,(f)c. (29)

k<n+2

Inequality (4) follows directly from (27)—(29).

(i) p=4%. It is easy to prove (5) by following the same line of
reasoning as the one considered in case (i). The only difference is that
instead of the first estimate in (9) we make use of the second one.

iii) %<p<4. We estimate |®, .|, in the following manner:
3<P e llg

1/q

k1 l/q 7
1D, ll, < {J |®D,, ;(cos t)|7sin t dt} + {j |D, (cos t)|7sin ¢ dt}
0 k=1
=1, +1,. (30)

Making use of (10) and observing that ¢ <4 we obtain

n+k—1 k=1

L<dk' Y (n+k—j)j1/2{j
0

Jj=n+1

l/q
(sin ¢)! — /2 dt}

<A(p) kKP4 k— 1) k(k — 1)
—A(p)k—1) K"~ (n 4k —1)"2, (31)

By applying Abel’s transformation, in view of (12) we obtain

n+k—1
Y. (n+k—j)X,(1) X,(cos 1)
Jj=n+1
n+k—1
= —3k=1)(n+1) P Ocost)+5 Y (j+1)P""(cos).
j=n+1
Further,
7 n+k—1 q 1/q
L<(2k)~"! “ Y (j+1) PUOcos £)| sin tdz}
k=t Jj=n+1

1/q
| P9 (cos £)|? sin ¢ dt}
1

+(2k)1(k—1)(n+1){j:

=2k) " Ly+(k=1)(n+1)(2k) " L,,. (32)
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Taking into account (11), we derive

7/2 1/q 7
122<{f [P (cos t)|"sintdt} +{f
k1

l/q
[P 9 (cos )| sin tdt}
/2

/2 1/q
<A(p)n+1)~12 {f f—3a2+1 dt}
k

—1

(33)
b4 1/q
+A(p)(n+1)1/2“ (n—t)q/z“dt}
/2
SA(p)n+1)" 123224,
In order to estimate /,, we make use of (33):
n+k—1 - 1/q
Li< ) (+1) {f |P{"9(cos 1)|“ sin tdt}
Jj=n+1 k!
n+k—1
SA(p) kP20 5 (j+D)2<A(p) k2 n+ k)2 (k—1).  (34)
Jj=n+1
From (30)—(34) it follows that
1Pl < A(p)(k —1)(n+ k)2 k1220, (35)

Taking into account (13), (14), (23), and (35), we obtain

IR e<A (1 +V"f;’l> Eu(f)e+A(p)k—1) kY22 PE,( £,

+A(p)k—=1) k' “2E,(f),. (36)

If in (36) we set k =[EZ*(f)c- E,”?(f),]1+ 1, then, after some simplifica-
tion, we obtain (6).

(iv) p=4. With the same reasoning as that used in case (iii), we
obtain

IR <AL+ (n+ D)2 k™) E(f)c
+hk7 k=D Ik +1)(n+ 1) E,(f)a
+hk P — 1) Ik +1) - E,(f)a}- (37)

To obtain (7) it remains to set k=n+ 1 in (37).
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(v) p>4. In the same way as that in case (iii) we derive that
IR e< AP (1 +(n+ 1)k~ E(f)c
+((k=1)K*P=3(n+k—1)
+k k=1)n+k)'"?)E(f),} (38)

Setting k=n+1 in (38), we obtain (8). This completes the proof of
Theorem 1.

5. SOME AUXILIARY STATEMENTS

In order to analyze the sharpness of the estimates obtained in Theorem 1
we need the following lemmas.

Lemma 1 [1, p. 325]. Ifa>1,n+1€N, then

I 32 —Ja*—=1)"
En((a_x)il/z)cz n_l/(2’;:(i_n_{_2)) : (a(az 7a1)3/4 ) (1 +5n(a))’ (39)

where I' is Euler’s gamma function and

10,(a)l <; (40)

4n+2)Ja*—1

if the right-hand side of (40) is less than 1.

LEMMA 2 [20]. There exists f* e C such that for infinitely many values
of ne N we have

IR.(f*)l[c=A(n+ 1) E(f*)c. (41)

Lemma 3 [6]. If feL,, 1<p<g< oo, and

o0
Z n2/p =14 — lEn(f)p < 0,

n=1

then fe L, and

En(f)q < A(p, q) {HQ(I/P ]/q)En(f)p + i v2(1/p71/q)7 lEv(f)p}' (42)
v=n+1

LemMA 4. For 1 <a<2 and

m=n+2>[(a—1)""]+1 (43)
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we have
(a—1)" 5

N (a—Ja®—1)" (44)

Proof. The following equality is known [ 1, p. 3277:

E,((a—x)""?),<4-

En((a—x)l/z)lzifm(l—a)1/21nit+\/7vtz_3n+2+1dl. (45)
a t+ 12— n+2__

Making the change of variable u=¢— (> —1)"%, we obtain

a—JZ—1
j 1(1_u2)u73/2(a+ /a2_1_u)71/2

0
1 m
><(a—1/a2—1—u)"/21n1+umdu.
u

Since for |u| <1 we have

E,((a—x) %), =27

1+u™
l—u™

In

it follows that

jaf\/ﬁ

0

E,((a—x)~"2), <25 Z (2k+1)~"

x((a+Ja* =1 —u)a—/a*—1—u)) " du

5/2 oo
2 Il'kma_IO'kma

(1 —U) u(2k+l)n173/2

T o 2k+1
where
a—Ja2—1 Qk+1)m—1/2—j 4
Likima= | - - . (j=0.1).
(cz—}-\/cﬁ—u)l/z(a—\/azfl—u)l/2
(47)

In order to express I, ,,, , as an infinite series, we make use of the following
formula [ 12, p. 3017:

Jb (x—a)* ' (b—x)""(ex+d) dx

a

=(b—a)* " Yac+d) B(a, B) - ,F, <oc, -y a+p; da—b)

ac+d>’ (48)
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where
£>0 ar +cb < B(
&, El ,
gd+ca
a,); z'
Fi(ay,ay;b,2)= ) ————— -,
2 1( 1 2 1 ) -;O (bl),‘ l!

(e, s
both integrals (47), we ob

Il;k,m,a =

tain

m—1/2+1i)

x, ff) =

Io;k,m,a=(a—\/7)<2/+1)m+1/2 Z

T2k + 1) m+1i)

T2k +1)m+1/2+1i)

N2k+)m+itl)

Now it is easy to see that

Il;k,m,u - 10'/' m,a

BASHMAKOVA AND RAFALSON

I'(o) I'(B)

Ia+p)°
Ia+k)
I'a) ~

(a),=

\/7)(2/{-0—1)}11 12 i l+1/2

T((2k+ 1)

(a—\/ﬁ)zf,
I'(i+1/2)
Ii+1)

i=0

(a—/a*—1)*

e) is the hypergeometric function. Applying formula (48) to

(49)

(50)

(o 2k +1)ym—1/2 I(i+12) I((2k+1)m—1/2+1)
(a=a*=1) ,ZO ri+l)  I(2k+L)m+i)
; Rk+1)ym—1/2+i
X(“_Vaz_l)z{l_ VA AT Ty sy }
SA(H— a2_1)(2k+1)1;171/2 ((2k+1)m)71/2 (a_l)l/2
N i (a—(i—’—/alZ)l_/zl)h‘ _\/ﬁ)(zk+l)m+]/2 ((2k + 1) m)~ 12
i=0
Sla—@— D[ Gk l)m—1/2+i
XEO (i+1)7 [_ k+ 1) m+i }

(51)
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From (46) and (51) we derive
E,((a—x)""?),

SA(a_l)l/2m71/2. i (2k+1)73/2 ((l— a2_1)(2k+l)m71/2

k=0
0 (1 _ 1)21‘
la—ya -1 A.m—32
e AT
el _1)\2
x Y (2k+1)"%( [q? —1)2k+1im+12 Z \/a > 1) (52)
k=0 = (i+1)
In order to estimate S(a)=Y7", (a —/a*—1)* (i+ 1)~ from above we
set M =[(a—1)""*] and split S(a) into two sums:
M 0
=2+ 2 =Siul@)+S;,(a) (53)
i= i=M+1
Obviously,
M
Sy la) < Z (i+1)""2<2AM+1)"2<2 /2(a—1)""4 (54
Further,

e}

Somla) S(M+2)71% % (a—/a>—1)*

i=M+1

=(M+2)""(a— /= 1MV (1 —(a—Ja>—1)*) !
<2 (M+2) P (@ 1) P (a—JaP 1)

2
Nz
atya S<2(a—1)"14, (55)

SNa— 1) (M+2)

Combining the relations (53)—(55), we obtain

S(a) < A(a—1)"14 (56)

—1/2

From (52) and (56), taking into account that m>(a— 1)~ "%, we obtain

the inequality (44).

Remark. Tt can be proved that there exists ¢ >0 such that for 1 <a <
l+eand m=n+2>=[(a—1)""*]+1 we have

E((a—x)""),zA(a—1)""*m= " a—/a*>—1)".
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6. ON THE SHARPNESS OF THE ESTIMATES (4)-(8)

THEOREM 2. There exists no function w(n) such that
(a) w(n)>0(n+1eN),
(b) w(n)—0 as n— oo, and
(c) forallfeC,n+1eN

IR e < APNE,(f) et alm)(n+1)> EP(f), EZ*(fle),  1<p<3,

(57)
or
IR e SAPNE(f)e+wn)(n+ 1) E, ") EZH(f),), 5<p<4,
(58)
or

IR e <APNE,(f)ctwmn+ ) EL(f),), p>4 (59

Remark. As a consequence of this theorem, we conclude, in particular,
that for 1 <p<$% and for $<p <4 the estimate (8) does not hold for all
feCand n+1€N.

THEOREM 3. There exists no ¢>0 such that for all fe C, n+1€ N one
has

IR e<APNEL e+ n+ 1P EL(f), - EF4(f)e), 1<p<i,

(60)
or
IR e SAPNEf) e+ (n+ D)2 E,; 75 f) - EFFTA(S),), s<p<4.
(61)

Proof of Theorem 2. Let 1<p<3. We assume, contrary to the asser-
tion of the theorem, that there exists a function w(n) satisfying the condi-
tions (a), (b), and (c). We make use of the function f,(x)=(a—x) "2,
1 <a<?2. If (43) holds, then

(n+2)'(a*>—1)""2< (n+2)’1(a—1)*1/2<4572<1,

A

4ﬂ
and therefore, due to Lemma 1, we have

E(f)e<Amn+1)""(a—1) " (a—/a®>—1)" (62)
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We set a=(2z) "' (z*+1),0<z<1, z=a—./a*—1. Then

f(x)=(22)"? (22 =2zx+1) 2= (22)" i P,(x) z~ (63)

k=0
Obviously,
IR(f)llc=(22)"2 (1 —z) 71 2" * L. (64)

From (42) and (44) it follows that, under the conditions of Lemma 4, we have

E,(f), <A(p)a—1)" (n+ 12727 (a—/a*> = 1)™. (65)

If in (57) we replace f by f, and take into account (44) and (62)—(64) then,
after some simplification, we obtain

L<A(p) (=Yt 1) "2 (1=2) " fon)(n + 1) (1 —2)"0 =52},
(66)
We set

»(n) = min {Z (w(n))l}, n+leN; 1—z=n"y(n).

Itis easy to verify that (1) 1 <a <2, and (ii) if  is sufficiently large (n > n'), then
(43) holds. Setting z=1 —n~!y(n) in (66), we obtain that for n > n’ one has

L<A(P)(L=n""p(n) > (p(n)) =" + () (p(n) " (1 —n~"yp(n)) =),

Letting n — oo, we obtain a contradiction. In the cases $<p<4 and p>4
the assertions of the theorem follow directly from Lemma 2.

Proof of Theorem 3. Let 1<p<3. We assume, contrary to the asser-
tion of the theorem, that there exists ¢ >0 satisfying the stated condition.
Setting f'= f,, in (60) and making use of (62), (64), and (65), under the
conditions of Lemma 4 we obtain after some simplification

21 —2)2<A(p)(n+1) 12234

+ (l’l + 1)1/6+s(272/p) Zl3/l2+s(1 _2)2/3+2£)‘ (67)

We set
Z:1_n(7p7]2e11+6s)/p(]+12£)' (68)

It is easy to verify that if n is sufficiently large (n>n"), then both condi-
tions of Lemma 4 hold. By assuming n>n", inserting the right-hand side
of (68) into (67), and letting » — co we obtain a contradiction.
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We consider the case 2 <p <4. The proof is again by contradiction, i.e.,
we assume that, contrary to the assertion of the theorem, there exists & >0
satisfying the stated condition. First of all we prove that

E(f)<A(n+1)""2(1—z)"12 2" (69)
Taking into account (63), we obtain

o 22k+l 1/2 z t2n+2 1/2
=2 —dt
n f‘a)2 < Z 2k+ l) (JO 1 _tz >

k=n+1

f2n+2 1/2
<2< 1 tdl) <A(n+1)""2(1—z)" 22",

which proves (69). From (69) and (42) for 2 <p <4 we obtain
E(f),<A(p)n'2=2P(1 —z)= 12 2", (70)

If in (61) we replace f by f, and take into account (62), (64), and (70),
then, after some simplification we obtain

1<A(P)(n+1)""2(1=2) "2 4 (n+ 1)~ VR2+etpA=2ep (] _ ) =12+p/A+e)
(71)

We set
1—z= (n + 1)(717(72+p+41:)+41:)/p(72+n+4f:). (72)

It is easy to see that if n is sufficiently large (n>n"), then both conditions
of Lemma 4 are satisfied. If we assume that n>n", if in (71) we replace
1 — z with the right-hand side of (72), and if we let n — co, then we arrive
at a contradiction.

For the last case $<p<2 we once more use proof by contradiction.
Making use of (42) and (44), under the conditions of Lemma 4, we obtain

E,,(fa),,SA(p) {(n+1)3/22/p (a_1)1/4 m+(a_1)1/4 i V1/22/172»}

v=n+1

n+1
<A(p)- <(n+ 122 (a— 1) 2" 4 (a— 1) (n+ 1)1/2*2/17.% >
—Zz

=A(p)1 —2) 22" T34 z(n+ 1) =2 (n+ 1)V22P (1 —2) 7).

The rest of the proof is completely analogous to the previous proofs and,
consequently, it will be omitted.
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7. THE ULTRASPHERICAL CASE

There is a generalization of Theorem 1 to the ultraspherical case. We
formulate it without proof.

For —3<a<ilet {J{**} be the system of ultraspherical polynomials,
orthonormal on [ —1, 1] with respect to the weight function (1 —x?)%, and
let L, , (1 <p<o0) be the space of functions f, measurable on [ —1, 1] and
integrable to the power p with respect to the weight (1 —x?)% with norm

11,0 = Ull (1= x2)* | f(x)|? dx}l/p'

We set, by definition, L, ,=C and || f|....=Iflc. We introduce also the
following notations:

c(f)= fl (1=x?)"f(x) J&(x) dx,  k+1€N;

1

NS T, n+1eN;
0

D= |

S =

k
RI(f)=f=SP(f), n+lel;
En(f)p,oc:inf{ Hf_ Qn Hp,oc: QnEHn}'
THEOREM 4. Let feC,n+1€eN. Then

IR () e

(A, pYE(f) e+ (n+ 1) 25+ Dt 12t 32) (B (1) )22x+3)

20042

%132

A({X) . (En(f)(‘+ (n + 1)OL+ 1/2 (ln(n +2))(oc+ 1/2)2/(2a+2)(m+3/2)

_Zat2,
a+3/2°

X(E (f) )2(x+1/2)/(2oc+3)) 1 <p<
n D, > S

X(E(f) )P (E,(f),,)0 " V232,

A, pYE,(f) et (n+1)" 12 (E,(f), )/t V2ee2)

242 2u42

a+3/2 a+1/2°

ANE,(f) e+ (n+1)" 12 (In(n 4 1)) =+ 2VEH2DE (f), ),
20042

a2’

N
A

x (Eh(f.)c)] —plat 1/2)/(20c+2))’

p

>2<x+2
a+1/2°

\ A% P)E(f)et+m+1)* 2 E(f),.)
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